1,392 research outputs found

    Generalized definition of time delay in scattering theory

    Full text link
    We advocate for the systematic use of a symmetrized definition of time delay in scattering theory. In two-body scattering processes, we show that the symmetrized time delay exists for arbitrary dilated spatial regions symmetric with respect to the origin. It is equal to the usual time delay plus a new contribution, which vanishes in the case of spherical spatial regions. We also prove that the symmetrized time delay is invariant under an appropriate mapping of time reversal. These results are also discussed in the context of classical scattering theory.Comment: 18 page

    Black branes on the linear dilaton background

    Full text link
    We show that the complete static black p-brane supergravity solution with a single charge contains two and only two branches with respect to behavior at infinity in the transverse space. One branch is the standard family of asymptotically flat black branes, and another is the family of black branes which asymptotically approach the linear dilaton background with antisymmetric form flux (LDB). Such configurations were previously obtained in the near-horizon near-extreme limit of the dilatonic asymptotically flat p-branes, and used to describe the thermal phase of field theories involved in the DW/QFT dualities and the thermodynamics of little string theory in the case of the NS5-brane. Here we show by direct integration of the Einstein equations that the asymptotically LDB p-branes are indeed exact supergravity solutions, and we prove a new uniqueness theorem for static p-brane solutions satisfying cosmic censorship. In the non-dilatonic case, our general non-asymptotically flat p-branes are uncharged black branes on the background AdSp+2×SD−p−2AdS_{p+2}\times S^{D-p-2} supported by the form flux. We develop the general formalism of quasilocal quantities for non-asymptotically flat supergravity solutions with antisymmetric form fields, and show that our solutions satisfy the first law of theormodynamics. We also suggest a constructive procedure to derive rotating asymptotically LDB brane solutions.Comment: 16 pages, revtex4, v2 - references added, "authors" metatag correcte

    Influence of Pure Dephasing on Emission Spectra from Single Photon Sources

    Get PDF
    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for non-zero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for non-zero detuning. We investigate the characteristics of this intensity shifting effect and offer it as an explanation for the non-vanishing emission peaks at the cavity frequency found in recent experimental work.Comment: Published version, minor change

    Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis

    Get PDF
    In contrast to its well-established actions as an organizer of synaptic differentiation at the neuromuscular junction, the proteoglycan agrin is still in search of a function in the nervous system. Here, we report an entirely unanticipated role for agrin in the dual modulation of electrical and chemical intercellular communication that occurs during the critical period of synapse formation. When applied at the developing splanchnic nerve–chromaffin cell cholinergic synapse in rat adrenal acute slices, agrin rapidly modified cell-to-cell communication mechanisms. Specifically, it led to decreased gap junction–mediated electrical coupling that preceded an increase in nicotinic synaptic transmission. This developmental switch from predominantly electrical to chemical communication was fully operational within one hour and depended on the activation of Src family–related tyrosine kinases. Hence, agrin may play a pivotal role in synaptogenesis in promoting a rapid switch between electrical coupling and synaptic neurotransmission
    • …
    corecore